BE Semester- VI (INSTRUMENTATION AND CONTROL ENGG) Question Bank

(IC 605 PROCESS CONTROL-I)

All questions carry equal marks(10 marks)

Q.1	Write short note on resistance and capacitance of thermal and Gaseous system in details.
Q.2	When cascade control loop is very useful? How the inner controller can be tuned to
	get the maximum advantages? Explain cascade controller scheme for distillation
	column control.
Q.3	What do you mean by process load? Explain magnitude of process load in details.
Q.4	Write short note on optimizing or computing machine control in details.
Q.5	How Zeigler Nichols method is useful in tuning of PID Controller? If a system
	having a step response of gain K of 2, delay time of 6 sec, and time constant of 18
	sec, find a suitable PID controller for the system.
Q.6	Give the Proportional Integral Derivative (PID) control schematic for a single
	capacitance liquid level process.
Q.7	What do you mean by distillation condenser? Write short note on condenser
	controls.
Q.8	Write short note on Batch process control.
Q.9	Explain process degree of freedom and control degree of freedom in details. Find
0.10	process degree of freedom for liquid to liquid heat exchanger.
Q.10	Explain the working of two element control scheme of a boiler.
Q.11	Write short note on distillation equipment.
Q.12	Explain multi position control in details.
Q.13	Explain self regulation, transient; direct acting controller and nominal load for process.
Q.14	Explain operation of floating point control with neat sketch and necessary
0.15	Waveforms.
Q.15	Explain operation of PI control with neat sketch and necessary
0.16	waveforms.
Q.16	Design electronic PID controller with necessary derivations
Q.17	Define proportional band. Design electronic proportional controller and
0.19	also state its initiations.
Q.10	Cive the principles governing distillation column. Explain distillation
Q.19	column control with next sketch
0.20	Explain food forward control loop with suitable example and post sketch
Q.20	Explain feed for ward control scheme for condensation in best exchangers
Q.21	Explain any one control scheme for control with next sketch
Q.22	Explain three element boller druin level control of superheated steam in
Q.23	boiler
0.24	Explain any one control scheme for evanoration in heat exchangers
0.24	Explain ratio control loop with suitable example and next sketch
0.25	Briefly narrate the occurrence of differential gap in two position
Q.20	controller. Give electronic implementation of two position controller
	controller. Give electroller implementation of two position controller.

Q.27	Give the generalized design procedure of Feedforward Control and
	show the schematic of it.
Q.28	Write short note on Vapor recompression control in distillation
	column.
Q.29	How magnitude of process load affects the performance of the control
	system? Explain with suitable example.
Q.30	What are the different methods available for tuning of PID Controller?
	Explain relay feedback method in details.
Q.31	Define following term:
	1) Transient
	2) Process Load
	3) Servo response
	4) Regulatory response
	5) Transport lag
Q.32	Write short note on Evaporation controls.
Q.33	Explain cascade control design criterion? Design cascade control scheme
	for valve positioner.
Q.34	A PI controller has Kp=4.5 and Ki=7 (second)^-1. Find the controller
	output for an error given by $Ep = 3*Sin(pi*t)$. What is the phase shift
	between error and controller output?
Q.35	A proportional derivative controller has a 0.4 to 2.0 Volt input
	measurement range, a 0 to 5 Volt output, $Kp = 4.5 \%/\%$ and $Kd = 0.07$
	per (%/minute). The period of the fastest expected signal change is 1.5 s.
	Implement this controller with Op amp circuits.
Q.36	What are the effects of disturbance on the system? Explain process
	disturbances in details.
Q.37	Why proportional control action should not be used alone? Give the
	Proportional (P) control schematic for a single capacitance liquid level
	process.
Q.38	Why evaporation control is required in chemical process? Explain single
	effect and multi effect evaporator.
Q.39	Write short note on storage vessel and surge vessel control in details.
Q.40	A furnace has a heating rate of 50 deg per min for full valve opening and
	a measuring element time constant of 60 sec. The measuring element time
	constant can be reduced to 20 sec. Would this change be worthwhile if
	proportional control is used?